
Relay-based network architectures for Collaborative
Virtual Reality Applications

Fadia Hasnaoui1, Lamia Zohra Mihoubi1, Maria Pateraki2,3 and Miloud Bagaa4,5
1 ESI Alger, Algeria - e-mails: {gf hasnaoui@esi.dz,gl mihoubi@esi.dz}

2 ORamaVR S.A., Heraklion, Greece - email: maria@oramavr.com
3 National Technical University of Athens, Greece

4 Aalto University, Espoo, Finland - email: miloud.bagaa@aalto.fi
5 CSC-IT Center for Science Ltd. Espoo, Finland - email: miloud.bagaa@csc.fi.

Abstract—Currently deployed NAT devices are designed pri-
marily around the client/server paradigm, in which relatively
anonymous client machines inside a private network initiate
connections to public servers with stable IP addresses and
DNS names. Thus, the asymmetric addressing and connectivity
regimes established by NAT devices have created unique prob-
lems for Peer-to-Peer (P2P) applications and protocols. Multiple
NAT-traversal techniques have been developed to overcome these
shortcomings, each offering a different set of pros and cons.
In the context of a P2P collaborative virtual reality (CVR)
system, the difficulty of selecting a convenient and effective
NAT-traversal technique increases exponentially because of the
added constraints related to CVR. In this view, this article
discusses the trade-offs of different NAT-traversal techniques and
the CVR challenges that need to be taken into account when
choosing a NAT-traversal technique. Finally, it presents a relay-
based approach that leverages container migration to mitigate
the drawbacks that come with this solution and accentuate its
advantages.

I. INTRODUCTION

6G system is expected to target a broad range of services
and applications rather than focusing only on regular con-
sumers as seen in previous generations. According to [1], the
ICT drivers towards the year 2030 aim to support the next
frontier in applications and business cases in Virtual Reality
(VR), Augmented Reality (AR), holographic-type communi-
cation services, digital twin, ubiquitous intelligence, tactile
Internet, and multi-sense experience. These industrial verticals
require rigorous requirements in terms of reliability, latency,
throughput, and availability.

VR aims to immerse the user in a virtual world, providing
the ability to interact naturally with the virtual environment
(objects and virtual characters) mainly for training and enter-
tainment purposes. With the recent interest in the paradigm of
the metaverse and the expected thriving of the 6G, the social
aspect in VR is increasingly supported in several application
domains to realize collaborative VR experiences beyond the
single user.

Collaborative Virtual Environments (CVE), a term synony-
mous with Collaborative Virtual Reality systems (CVR), are
shared virtual spaces created to allow participants across a
network to work together on common tasks while coexisting
in the same virtual space. The collaborative activities can range

from group work (designing systems, environment planning,
product design, and modeling) to social activities and enter-
tainment. CVR is currently one of the most challenging VR
research areas. The single-user VR demands computational
power to handle the incoming data from sensory input devices
and render high-quality 3D graphics to simulate reality with
high fidelity. The output is generated with a frame rate that
is, at the very least, acceptable and comfortable to the human
eye. Beyond the single-user scenario, CVR demands a high
quality of service (QoS) to maintain multi-user virtual spaces’
consistency. The network characteristics in terms of network
bandwidth and latency are considered to ensure a coherent
experience by all users, while for a smooth CVR experience
with high quality of experience (QoE), the network should
be optimized in terms of end-to-end delay, bandwidth, and
reliability. Furthermore, to guarantee that users do not feel
the difference between local and remote objects in the shared
space, high interactivity and responsiveness are required.

In this view, this paper underscores the requirements of
CVR systems and the network-related challenges that arise
from these requirements and constraints and presents network
architectures used in CVR systems and their limitations,
followed by an explanation of how the introduction of relay
services can fill these gaps.

The remaining of the paper is organized as follows, sec-
tion II discusses relevant research in this field. Section III
presents CVR, its requirements, and the resulting networking
challenges. The proposed solution is described in section
IV. Section V shows the experiment results of the proposed
solution. Finally, the study is concluded in section VI with a
critique of the suggested approach and an inspection of future
research avenues.

II. RELATED WORK

CVR network-related challenges and requirements have
been covered in varying levels of depth and extensively. A
taxonomy of Collaborative Virtual Environments (CVEs) has
been given by Macedonia and Zyda in [2]. Authors in [3],
[4] have discussed the challenges that VR systems have to
overcome in order to fulfill untethered and interconnected
VR’s immense potential in manifold domains and the require-
ments of interconnected VR in terms of latency, reliability,978-1-6654-3540-6/22 © 2022 IEEE



and bandwidth. Authors in [3] have presented a set of key
enablers to achieve the future vision of an ultra-reliable and
low latency VR by leveraging mobile edge computing and
proactive caching. While the authors tackle the topic of
network challenges in VR, they only skim over CVR and
the added difficulties it brings, failing to address important
requirements. The authors have identified network-related
enablers for improving the performance of wireless head-
mounted displays and exploiting an edge computer network.
But, these suggested modifications are not always possible
or the best option, especially in the case of P2P networks.
Another important issue that was not considered is scalability.
Huge overlay networks would arise as a consequence of edge
computing, creating a problem for connectivity protocols [5],
which are already an issue for P2P networks [6].

In [4], authors underscore the desperate need for a fun-
damentally new network architecture capable of satisfying
VR’s exceptionally high data rate and stringent latency re-
quirements as VR rapidly goes beyond early use cases like
games and moves towards social media trends and everyday
life applications. The authors have identified key enablers of
fully interconnected VR and promising research avenues. They
conclude that a plethora of challenges in multiple domains
needs to be addressed in order to achieve this future vi-
sion including caching/storage/memory, local/fog/edge/cloud
computing, and processing, computer vision, and media and
context-information and analytics. They focus on improving
the VR system rather than the networking aspect, and short-
range wireless communications that only decrease the latency
between the headset and the PC running the CVR application
rather than improving the quality of communication between
the dispersed participants.

To conclude, the literature offers only a handful of tools and
ideas to improve networking for VR and CVR. Even fewer
products of literature approach the topic of NAT-traversal in
the case of P2P CVR systems, let alone suggest the adaptation
of the traditional NAT-traversal techniques to CVR. This paper
comes to fill this gap by suggesting a comprehensive system
that leverages relay service and NAT-traversal for enabling an
efficient Collaborative Virtual Reality (CVR) environment.

III. COLLABORATIVE VIRTUAL REALITY (CVR)

CVEs are computer-generated spaces that support multiple
participants across a network. The connected users are visually
embodied in the shared environment as avatars. The users are
autonomous entities, free to navigate independently through
the terrain, encountering each other, artifacts, and data objects.
However, they are also able to collaborate/work together on
shared tasks and interact with each other via speech, text, or
body gestures.

Virtual environments were first introduced as one user
applications, but with the appearance of CVR, another layer
of difficulties and challenges was added to the mix. The main
concern for CVR systems is achieving a high level of realism
for the connected users. In other terms, the users must have the
feeling of being present in the same place and they must be

able to see and react to others’ actions when they happen.
Thus, the manifold of technological challenges stemming
from a variety of disciplines like computer networks, cloud
computing, memory and storage, artificial intelligence, and
computer vision needs to be addressed to achieve this vision.

This section presents the requirements and characteristics of
CVR systems and focuses on the network-related challenges
that need to be addressed in order to fulfill these requirements.
In the balance of this section, we will present the network
and CVR requirements and characteristics, then we present
the network relay concept for enabling a collaborative virtual
environment.

1) Bandwidth and network capacity: Supporting multiple
users, video, audio, and real-time sharing of 3D graphics
primitives and models necessitates a lot of bandwidth in
distributed VR. In order to guarantee that all the users have
the same current view/state on the shared 3D space when a
user makes changes to the shared virtual environment, updates
need to be sent to all the other users. The eye can capture 720
million pixels for each of the 2 eyes, 36 bits per pixel for full
color and 60 frames per second, for a total of 3.1 trillion (tera)
bits for some headsets, assuming no head or body rotation.
Compression standards today can decrease that by a factor of
300 and even if future compression could hit a factor of 600,
that still means that network throughput needs to be at least
5.2 gigabits per second [4].

2) Latency: Stringent latency criteria are of utmost impor-
tance in CVR environments in order to provide a pleasant
immersive and interactive VR experience. A CVR application
that allows virtual surgical training for medical students from
around the world mandates that participants are made aware
immediately of any action that another participant takes in
the surgery room, otherwise the training is severely disrupted
and inaccurate. For real-time systems like CVR, latency must
be less than 100 ms and also less than the time needed to
generate one graphics frame [7]. The fulfillment of the ideal
CVR vision of a seamless immersive, interactive, and highly
responsive virtual world that the geographically dispersed
users can’t distinguish from reality hinges on approaching
this limit as much as possible. In order to reduce end-to-end
latency to reasonable standards, it is important to reduce the
communication delay [3].

3) Reliability: Reliability means that systems can logically
assume that players are all able to connect successfully to the
environment and send and receive data correctly. Users must
receive update messages relating to changes in the state of
a shared object in a reliable and timely manner. Reliability
also includes failure management, which means the reaction
of the system to a possible failure. For instance, if a user
drops out from the network, the other users must continue
their experience of the CVR application unaffected by the
event. One of the biggest challenges of CVR is that both
low latency and high reliability are stringent constraints of the
system despite their conflicting nature. Systems requiring high-
reliability mandate frequent re-sending of lost data packets,
thus having longer network delays as re-sending packets



introduce lags in the system.

A. Relay

In P2P paradigm exists multiple NAT traversal solutions,
namely port forwarding that may seem as a promising solution
but presents security and privacy concerns since the user is
opening ports and creating direct lines to the network for
hackers and malware attacks. Furthermore, this solution re-
quires the intervention of the average user which can be tricky
and create some unnecessary complications. An alternative can
be TCP/UDP Hole Punching which requires all intermediary
routers to be EIM-NATs (Endpoint-Independent Mapping Net-
work Address Translators). However, a significant percentage
of deployed NATs use Endpoint-Dependent Mapping and do
not allow TCP/UDP hole punching. But, the use of a relay,
to implement a sort of hybrid peer-to-peer with client/server
architecture is quite promising. This solution requires the use
of a node with a static public IP address, the two peers simply
use the server to relay messages between them, Instead of
attempting a direct connection.

The use of a relay, to implement a sort of hybrid peer-
to-peer with client/server architecture is quite promising. The
major advantages of using a relay in a P2P network are:

1) Clients can practically always connect to it, unlike the
other two NAT-traversal techniques. It is considered the
most reliable method of NAT-traversal because it ensures
100% connectivity between the peers (clients) as long
as both peers have connectivity to the relay.

2) Relay does not require user intervention, unlike other
strategies like port forwarding in which the users need
to configure their home router.

3) Relay can allow much more control over the security of
the solution, unlike port-forwarding.

4) Relay can massively reduce packet count and band-
width consumption when multi-casting in peer-to-peer
networks. Once the relay receives the message from the
client, it sends it to each client. Another scenario where
the use of a relay can avoid network congestion. In fact,
when multiple users are all sending to the same user,
in this case, the relay can combine their packets into a
single packet and forward it to its destination.

On the other hand, relaying consumes the server’s pro-
cessing power and network bandwidth. Moreover, the use of
a relay will increase the network latency, this is especially
noticeable when the application is sensitive to delay like CVR.
In order to benefit from the advantages of relay and adapt it
to CVR applications, this article suggests an approach that
leverages container migration to mitigate the drawbacks that
come with relay, as a NAT-traversal solution, and accentuate
its advantages.

IV. OUR SOLUTION

In an attempt to reduce the delay caused by relay servers
while ensuring maximum reliability and failure management
we took inspiration from the survey conducted by Qirtas
and al [8]. The authors have studied the impact of several

factors like the number of relay nodes, their placement,
buffer management, the network topology on improving the
performance of relays by minimizing the network latency.
One of the most important factors discussed is the relay
node’s placement; nodes with fixed static placement have sub-
optimal network performance, while mobile-based nodes that
can change position according to the network topology and the
connected participants’ needs, can be more efficient because
it increases the delivery ratio. Another issue that hybrid P2P
applications (that are a combination of P2P and client-server
models) struggle with it when the host (the peer that plays
the role of both a client and a server) drops from the network
causing all the other users to lose connection to the application.
In this regard, we suggest a solution that allows the selection
of the optimal host, and the migration of the host if the user
in question drops from the network.

Our suggested approach contains the following models (see
Figure 1):
A. Relay Service

Relay agents are intermediary elements that accept requests
and transfer packets to other nodes based on information found
in the messages. They also modify messages by inserting and
removing routing information but do not modify any other
portion of it. Relay servers may be used to aggregate requests
from multiple peers, the use of relays also eliminates the
need for peers to be configured with the necessary security
information they would otherwise require to communicate
with other peers behind a NAT/Firewall. The relay used here
must be deployed in a container. In our case, we used Light
Reflective Mirror [9], a free self-hosted relay available for all
platforms (PC, Mac, Linux, WebGL, Android, IOS) and can
be deployed using Docker in order to migrate the container
dynamically, Fig 1 explains the general layout of our solution.

B. Node Migration Manager

Mechan and al. in [10] proved how promising container
migration can be to improving the general performance in
Mobile Edge computing, the authors presented a multilayer
framework for migrating active applications to the nodes closer
to clients. Container migration is the process of transferring a
container from one source to a destination node. It can help
provide fault tolerance in case of system failure, it serves
also for load balancing, hardware breakdowns, scaling, and
resource reallocation [11].

In order to ensure a smooth experience for the CVR
users, we opted for live migration using the checkpoint/restore
mechanism, Live migration is the mechanism of transferring
a running container from one server to another with minimal
interruption. The migration is performed by sending the state
of the processor, network, and local storage in addition to
memory and disk content to the destination host [12]. One
live migration mechanism is checkpoint/restore [13], which is
an efficient container-based service migration, that leverages
the CRIU tool that allows to back up the state of a running
container so that its execution can later be recovered from the
time of the checkpoint. The checkpointing operation collects



Fig. 1. General design of the suggested approach.

and retains the current status of all running processes in the
container. Following that, all processes will be terminated and
a new activity, restore, will be launched. The restore operation
initiates the creation of new processes using the previously
acquired dumped file at checkpoint, upon resuming the process
execution and activating the network, the container resumes its
usual operations. In order to avoid sending voluminous files
that are the product of the checkpoint command across the
network, we opted to use NFS storage to share and centralize
the container file system.

In our context, the relay container consists of description
image files, Runtime Memory, and log files, saving these files
in the shared mount between the host and the destination
instead of sending them through the network saves a lot of time
and allows a faster restoration process. In a conventional setup,
after the migration the container will be accessible through the
new host node IP, this is disturbing for our already connected
clients since the CVR application was built using the old host
IP, in order to mend that and ensure the high availability
of our architecture we will be using a Floating IP address
shared between the Primary and secondary node, a floating
IP is a virtual IP address that can be instantly moved from
one node to another with passive/active configuration. When
the restoration is completed and the relay container is running
on the secondary node the Floating IP will be assigned to the
node automatically and transparently, to avoid any additional
downtime.

1) Choose optimal relay node location Algo-
rithm(C.O.R.N.L): This algorithm is executed by the
node migration manager every time a room is created in
order to choose the optimal location for the relay container
by comparing the average distance between the connected
clients and the two available nodes. If the secondary node has
an average distance inferior to the primary one, then the live
migration is activated and the relay container will migrate
to the secondary node. We used geophysical distances to
approximate latency since there is a correlation between the
two. The further node from another is, the higher latency
between the two becomes, see Algorithm 2. In order to
get clients’ locations, we send an HTTP request to an IP
geolocation website with web API for example http://ipinfo.io

Calculating the distance between two nodes: To determine
the distance between the clients and nodes (algorithm 1)
using their GPS coordinates (latitude and longitude), we will
be using the Haversine formula

C. Host Migration Manager

For host migration to work properly, the session’s currents
state and context need to be saved, the data to save ranges from
the users’ progress to their character’s statistics and position, to
achieve this each client periodically is required to serialize the
data in JSON format using the JSON.Net package, the unity
web API is used to send the data to the host migration manager
that stores all the session context (connected clients IPs, non-
Player and player GameObjects,...etc.). Thus, when the new
host is selected, the host migration manager sends the saved
game context across the network, the new host deserializes the
received JSON data to respawn the game objects and recreate
the scene just like it was before the failure.

The session also needs to be monitored so the system can
detect when the host loses connection, a way is to implement a
host timeout detection mechanism by saving the timestamp of
the last event received from the host and checking that value
constantly by the Host migration process. When the manager
detects that the Master peer is not sending events as expected
it can then activate the Host migration process.
The steps can be enumerated into the following:

1) The timeout mechanism detects the host failure.
2) The Host migration manager sends a request to the

participants to disconnect from the host and disables all
GameObjects.

3) Determination of the new host process is activated
and the new host is selected by H.M.M (Host Migra-
tion Manager), since we are transferring a considerable
amount of data that describes the room’s state, the new
host is the client with the lowest latency.

4) The H.M.M sends the game saved state to the new host.
5) The new host deserializes the state and reconstructs the

scene.
6) The rest of the players are instructed to reconnect to the

new host and reactivate all GameObject.



Algorithm 1 Function cal dist(node1,node2)
Data: node1(lat1,long1), node2(lat2,lon2) are the GPS coor-
dinates (latitude,longitude) of two nodes we want to determine
the distance between.
Result: the distance in meters between node1 and node2
R← 6371000;
DeltaPhi← lat1− lat2;
DeltaLambda← long1− long2;
a← sin2(DeltaPhi

2 )+cos(lat1). cos(lat2). sin2 (DeltaLambda
2 )

c← 2. arctan2 (
√
a,
√
1− a);

dist← R.c
return dist

Algorithm 2 Algorithm C.O.R.N.E.L
Data: loc prim node, loc secondary node: coordinates of
the primary node
and the secondary node.
Result: a Boolean that if set to true launches the live
migration and else do nothing.
sum dist prim node← 0
sum dist second node← 0
result← False
if room started then

connected clts← get connected clts() /* this will send
a request to
the relay container to retrieve the list of connected clients*/
conncted clt ∈ connected clts

loc clt← get location(connected clt.ip)
dist clt prim node ←

cal dist(loc clt, loc prim node)
sum dist prim node ← sum dist prim node +

dist clt prim node
dist clt second node ←

cal dist(loc clt, loc secondary node)
sum dist second node ← sum dist second node +

dist clt second node

avg dist prim node←
sum dist prim node

connected clts.numberOfConnedtedClts
avg dist second node←

sum dist second node
connected clts.numberOfconnedtedClts
if avg dist prim node > avg dist second node then

result← True
end if

end if
return result;

To choose the new host among the connected clients, we
use latency as a decision metric since we will be sending a
considerable amount of data across the network. The new host
should be the closest to the relay node. Refer to algorithm 3.

Algorithm 3 Algorithm Determination of New Host
Data: loc node: coordinates of the relay node
Result: The IP address of the new host.
dist← 0;
min dist←Max V alue; /*we initialise the min distance to
the maximum value.
new host← 0.0.0.0;
if host Migration activated then

connected clts ← get connected clts()
conncted clt ∈ conected clts

loc clt← get location(connected clt.ip)
dist← cal dist(loc clt, loc node)
if dist < min dist then

min dist←dist;
new host ←conncted clt.ipadress;

end if

end if
return new host;

V. PERFORMANCE EVALUATION

We have evaluated our framework by creating our ex-
perimental setup that consists of our different VMs. Two
Linux VMs represent the primary node and secondary node,
respectively. Whereas, the two widows VMS that represents
our clients, client1 and client2, in a way that client1 and
client2 are behind different LANs and geographically distant.
To control the link speed and mimic the distance ”tc” com-
mand has been employed. The experiment evaluation starts by
launching the LRM-node in the primary node and connecting
the two clients to it one as a host and the other as a client. We
have used measuring tools to collect information about the
performance, after collecting the data and treating them the
next step is launching the migration operation, following the
migration once more we collect performance measurements
to identify the effect of our framework on the QoE. We have
compared our solution to the baseline approach, whereby the
relay server has a fixed location. In contrast, our solution
deploys the relay server as a container that dynamically
migrates from the primary node to the secondary one to ensure
a better experience for connected participants.

A. Delay evaluation

We have compared our solution to the baseline approach in
terms of delay (RTT: Round Trip Time). By definition, RTT is
the time it takes for a packet to go from the sending endpoint
to the receiving endpoint and back. It includes propagation
delay, processing delay, queuing delay, and encoding delay.
The higher the RTT value and the lower the service quality.



(a) Delay evolution of our solution compared to the baseline
approach

(b) Throughput evolution of our solution compared to the baseline
approach

Fig. 2. Performance evaluation of the proposed solution in terms of delay and throughput.

It is considered more accurate since it is measured at the
application layer and includes the additional processing delay
produced by higher-level protocols and applications.

Fig. 2(a) shows the performance evaluation of our solution
(CONT) compared to the baseline approach (APP). The first
observation that we can draw from this figure is that the RTT
in the baseline fluctuates wildly raising from 584 ms to 2481
ms, while our RTT in our solution is relatively stable and lower
than 400 ms. The obtained results demonstrate the efficiency
of our solution in terms of end-to-end delay.

B. Throughout evaluation

Throughput is a network metric that indicates how much
data an application produces to send across the network at
any given time. Fig 2(b) shows the evaluation of our solution
in terms of network throughput. From this figure, we observe
that the throughput keeps fluctuating and varies from one-time
interval to another. The main observation from this figure is
that our solution generates lower bandwidth compared to the
baseline approach, which demonstrates the efficiency of our
solution in terms of bandwidth consumption strategy.

VI. CONCLUSIONS

In this paper, we have presented the requirements and char-
acteristics of collaborative virtual reality systems including
flexibility and multiple viewpoints, sharing context, ownership,
awareness, communication and negotiation, consistency, and
scalability. Followed by an in-depth inspection of the main
network challenges that need to be addressed in order to fulfill
the aforementioned requirements, and how failing to meet the
conflicting and stringent constraints on bandwidth, latency and
reliability can impact the user’s experience of the collaborative
virtual environment. We present the network architectures
used in CVR systems, their limitations, and how relay-based
network architectures can contribute to accomplishing the ideal
vision for CVR systems. We have proposed a new solution that
leverages the network relay service and container migration
for enhancing the quality of experience (QoE) by reducing
the delay and enhancing bandwidth utilization. The obtained

results demonstrate the efficiency of the proposed solution in
terms of end-to-end delay and bandwidth.

VII. ACKNOWLEDGEMENTS

This work has been partially supported by the European
Union’s Horizon 2020 Research and Innovation program, un-
der the project ACCORDION (Grant agreement ID: 871793).

REFERENCES

[1] “A blueprint of technology, applications and market drivers towards the
year 2030 and beyond,” ITU-T FG-NET-2030, ITU, Geneva, Switzerland,
May 2019.

[2] M. R. Macedonia and M. J. Zyda, “A taxonomy for networked virtual
environments,” IEEE multimedia, vol. 4, no. 1, pp. 48–56, 1997.

[3] M. S. Elbamby, C. Perfecto, M. Bennis, and K. Doppler, “Toward low-
latency and ultra-reliable virtual reality,” IEEE Network, vol. 32, no. 2,
pp. 78–84, 2018.

[4] E. Bastuğ, M. Bennis, M. Médard, and M. Debbah, “Towards inter-
connected virtual reality: Opportunities, challenges and enablers,” arXiv
e-prints, pp. arXiv–1611, 2016.

[5] P. Garcia Lopez, A. Montresor, D. Epema, A. Datta, T. Higashino,
A. Iamnitchi, M. Barcellos, P. Felber, and E. Riviere, “Edge-centric
computing: Vision and challenges,” pp. 37–42, 2015.

[6] H. Bandara and A. P. Jayasumana, “Collaborative applications over peer-
to-peer systems–challenges and solutions,” Peer-to-Peer Networking and
Applications, vol. 6, no. 3, pp. 257–276, 2013.

[7] S. Bryson, “Approaches to the successful design and implementation of
vr applications,” Virtual reality applications, pp. 3–15, 1995.

[8] M. M. Qirtas, Y. Faheem, and M. H. Rehmani, “Throwboxes in delay
tolerant networks: A survey of placement strategies, buffering capacity,
and mobility models,” Journal of Network and Computer Applications,
vol. 91, pp. 89–103, 2017.

[9] “Derek-r-s/dark-reflective-mirror: A relay transport for mirror us-
ing darkrift2 as the relay server.” https://github.com/Derek-R-S/
Dark-Reflective-Mirror, (Accessed on 02/08/2022).

[10] A. Machen, S. Wang, K. K. Leung, B. J. Ko, and T. Salonidis, “Live ser-
vice migration in mobile edge clouds,” IEEE Wireless Communications,
vol. 25, no. 1, pp. 140–147, 2017.

[11] P. Niroj, “Live container migration: Opportunities and challenges,” Aalto
University, 2017.

[12] S. V. N. Kotikalapudi, “Comparing live migration between linux con-
tainers and kernel virtual machine: investigation study in terms of
parameters,” 2017.

[13] R. A. Addad, D. L. C. Dutra, M. Bagaa, T. Taleb, and H. Flinck,
“Towards a fast service migration in 5g,” in 2018 IEEE Conference on
Standards for Communications and Networking (CSCN). IEEE, 2018,
pp. 1–6.


