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Abstract—In the next few years, new demanding applications
will be supported on mobile platforms by reconciling two
conflicting requirements: high performance (often with real-time
limitations) and low power consumption. The objective of the
vipGPU project is to develop hardware and software technology
to provide efficient support for two such application scenarios,
namely (a) simultaneous localization and mapping (SLAM) in
mobile robotics systems, and (b) virtual reality (VR) in portable
devices to simulate serious games with emphasis on simulating
surgical interventions and medical training in general. In this
project, we aim at developing a new heterogeneous platform
consisting of hardware accelerators for low power embedded
systems optimized (at the hardware and software level) for the
implementation of the two applications mentioned above.

Index Terms—Simultaneous Localization and Mapping, FPGA,
Low Power, Augmented Reality, Approximate Computing

I. INTRODUCTION

The proliferation of autonomous robots has created the need
to construct highly accurate 3D maps of their observed envi-
ronment and to track the position and the trajectory of these
agents within these maps. However, the process of localizing a
walking agent and mapping its environment, which is referred
to as Simultaneous Localization and Mapping (SLAM), is hard
to solve. This process typically merges data from various sen-
sors such as stereo/mono and RGB-D cameras, laser scanners
(lidars) and Inertial Measurement Units (IMUs) and involves
a non-trivial amount of data processing.

The scenarios for the virtual reality system focuses on (i)
evaluation of shaders to be used to simulate virtual characters,
and (ii) evaluation of the robustness of the learning game in
different medical scenarios. In virtual reality applications, the
speed at which the image is refreshed is very important for
the smooth presentation of virtual content with the minimum
image refresh rate in virtual reality scenarios reaching 40
frames/sec.

In order for embedded systems to be useful they have to
deliver high performance in a power constrained environment,
typically in the order of few Watts for autonomous robots.
Specialized architectures are required to execute parts of the
SLAM algorithm and graphics rendering that are computa-
tionally demanding. In section II, we briefly describe the

NEOXTM architecture designed specifically for such work-
loads. In sections III and IV, we focus specifically on the visual
SLAM algorithm and we present results from our experimental
evaluation on an FPGA acceleration prototype. A variation of
the SLAM algorithm presented in section IV will be ported
and evaluated in the NEOXTM platform.

II. THE NEOXTM MULTICORE ACCELERATOR

The vipGPU platform is equipped with NEOXTM, the
commercial, programmable hardware accelerators offered by
Think Silicon S.A. [1]. NEOX is a parallel multicore and
multithreaded GPU architecture based on the RISC-V RV64C
ISA instruction set. In the final version of the product, the
number of cores will vary from 4 to 64 cores organized
in 1-16 cluster elements with configurable cache sizes and
thread counts. Depending on cluster / core configuration,
NEOX compute power is expected to range from 12.8 to
409.6 GFLOPS at 800MHz with support for FP16, FP32 and
optionally FP64 and SIMD instructions. Figure depicts a high-
level design of NEOXTM.

Fig. 1. The NEOXTM Architecture

III. SLAM ALGORITHM

The application of visual SLAM in the domain of humanoid
robots is a challenging task and remains an open-research
problem.The SLAM algorithm used in this project is based
on KinectFusion algorithm of the SLAMBench suite [2]. Our
work in this project introduces a feature extraction based



loop closure extension on the KinectFusion pipeline, to help
recover the agent’s pose when the sensor input or aggressive
approximations cause failures of the tracking system.

In this section, we start from the baseline C++/OpenMP im-
plementation, and we develop precise as well as approximate
hardware accelerators for the most important components of
the algorithm as shown in Figure 2. The input to the algorithm
are depth frames.

Fig. 2. KinectFusion data processing pipeline [2].

The bilateral filter is a low-pass edge-preserving filter
that blurs the depth image in order to reduce the effects
of noise and invalid depth values. Tracking estimates the
3D pose of the agent by registering the input depth frame
with the 2D projection of the currently reconstructed model
from the most recent camera position. Integration merges the
corresponding depth map into the current 3D reconstructed
model. KinectFusion utilizes a 3D voxel grid as the data
structure to represent the global map, employing a truncated
signed distance function (TSDF) to represent 3D surfaces [3].
Raycasting is a computer graphics algorithm used to render
3D scenes to 2D images.

Figure 3 shows the input and output of the SLAM algorithm
for a scene. Profiling the SLAM code in x86-64 and ARM
processors shows that the integration and raycast kernels
contribute more than 70% of total execution time.

Fig. 3. The scene (top left), the input depth (RGB-D) frame (bot. left), the
tracking output (top right), and the reconstructed 3D map (bot. right).

IV. EXPERIMENTAL EVALUATION

A number of well known HLS optimizations such as loop
unrolling, software pipelining and array partitioning are used
to improve the performance of KinectFusion. Moreover, ap-
proximate source-level optimizations, which may affect the
accuracy of the baseline code are also used to further improve
performance. Approximate optimizations include loop perfo-
ration [4], reduced floating point precision, and, in general,

skipping (or replacing) part of the computation not critical for
the accuracy of agent tracking.

We implemented our designs using the VitisTM Platform
targeting the Xilinx UltraScale+ MPSoC ZCU102 Evaluation
Kit. As input, we use three camera trajectories lr.kt[0-2] from
ICL-NUIM, a synthetic dataset providing RGB-D sequences
from a living room model [5].

To place an upper bound on errors, we discard all approx-
imate configurations that increase the number of untracked
frames wrt. the baseline.

Table I shows the performance improvements achieved
by the fastest precise and fastest approximate accelerators.
The last column shows the average RMSE per frame when
only the corresponding kernel is approximate and all other
kernels run precisely. For example, for a single bilateral filter
HW accelerator, precise optimizations yield 705x speedup
compared with the unoptimized HW implementation, whereas
approximate optimizations further increase the speedup to
1044x. For more information on the experimental evaluation
of SLAM, refer to [6]. Our best FPGA design achieves 27.5 fps
at an 320x240 input depth frame resolution without exceeding
the tight error bounds necessary for tracking convergence.

TABLE I
PERFORMANCE OF HW KERNEL IMPLEMENTATIONS (1 ACCELERATOR).

Unopt. Fastest and Fastest and
Precise Approximate

Hz Hz (Speedup) Hz (Speedup) RMSE
Bilateral 0.54 380.5 (705x) 564 (1044x) 2.28
Tracking 0.49 17.7 (36x) 323 (659x) 2.02
Integration 0.72 10.1 (14x) 42.4 (59x) 2.54
Raycast (SW) 6.28 - 110 (17.5x) 2.07
Raycast (HW) 0.22 0.28 (1.27x) 5.7 (25.9x) 2.22
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